Ausbreitung von Infrarot-Licht in Räumen

Henrik Schulze

Fachhochschule Südwestfalen in Meschede

Nürnberg, 2016-06-07

 Optische Übertragung mit Intensitätsmodulation und direkter Detektion (IM/DD)

- Vorteile der optischen Übertragung
- Grundprinzip IM/DD

Charakterisierung des optischen Übertragungskanals

- Ausbreitungsdämpfung, (verallgemeinerter) Lambert-Strahler
- Mehrwegeausbreitung
- Systemtheorie: Impulsantwort und Übertragungsfunktion
- Berechnung der Übertragungsfunktion und der Impulsantwort
- Numerische Beispiele
- Zusammenfassung und Ausblick

Infrarot-Übertragung in Räumen

Vorteile:

- Das Signal durchdringt keine Wände ⇒
 - Keine Frequenzplanung erforderlich
 - Abhörsicherheit auf der physikalischen Ebene
- Preisgünstige Komponenten

Randbedingungen:

- Grenzwerte f
 ür die optische Leistung (Schutz der Augen)
- Rauschquellen:
 - Schrotrauschen durch Umgebungslicht
 - Thermisches Rauschen der elektronischen Bauteile
- Deterministischer statischer Mehrwegekanal

LED mit Wellenlänge (z.B.) im nahen Infrarotbereich: $\lambda_{\text{Licht}} \approx$ 850-1000 nm

Inkohärente optische Übertragung (IM/DD)

Intensitäts-Modulation (IM) des Lichtes

 \Rightarrow Reelles Basisband-Signal $x(t) \ge 0$

- Direkte Detektion (DD) der Lichtintensität am Empfänger
- Modulationsfrequenzen: $\it f_{mod} \sim 10^{6}\,{
 m Hz} \Rightarrow \lambda_{mod} \sim 300\,{
 m m}$
- Schwingung der Lichtwelle (f_{Licht} ~ 10¹⁴ Hz) wird am Rx heraus gemittelt (Fläche A_{Rx} ≫ λ²_{Licht})
- ⇒ statischer Mehrwegekanal

Mehrwege-Ausbreitung: Dämpfung(en) $\eta \propto d^{-2}$

 $\begin{array}{lll} \text{Sender} (\text{Tx}) \rightarrow \text{Empfänger} (\text{Rx}) & \eta_{\text{Rx,Tx}} \\ \text{Sender} \rightarrow \text{Flächenelement} A_k & \eta_{k,\text{Tx}} \\ \text{Flächenelement} A_k \rightarrow \text{Empfänger} & \eta_{\text{Rx,k}} \\ \text{Flächenelement} A_k \rightarrow \text{Flächenelement} A_i & \eta_{i,k} \\ \text{Reflexionsfaktor} \text{ des Flächenelements} A_k & \rho_k \end{array}$

Ausbreitungsmodell $\eta \propto d^{-2}$: Lambert-Strahler

Ungerichteter Strahler ("Milchglas") oder diffuser Reflektor

Sende- und Empfangsflächen erscheinen um die geometrischen Faktoren $\cos \vartheta$ und $\cos \psi$ verkleinert:

$$\eta_{\text{Rx,Tx}} = \frac{1}{\pi} \cos \vartheta \cdot \frac{A_{\text{Rx}}}{d_{\text{Rx,Tx}}^2} \cos \psi$$
 und entsprechend für $\eta_{i,k}$ usw.

Keine sonstige Richtcharakteristik!

Tx: Verallgemeinerter Lambert-Strahler

Modell für Tx-Richtcharakteristik mit (Lambert-) Parameter m:

$$\eta_{\mathsf{Rx},\mathsf{Tx}} = \frac{m+1}{2\pi} \cos^{m} \vartheta \cdot \frac{A_{\mathsf{Rx}}}{d_{\mathsf{Rx},\mathsf{Tx}}^{2}} \cos \psi \quad \text{und entsprechend für } \eta_{i,\mathsf{Tx}}$$

- $m = 0 \rightsquigarrow$ isotroper Halbkugelstrahler
- $m = 1 \rightsquigarrow$ diffuse Streuung (Lambert-Strahler)
- $m > 1 \rightsquigarrow$ gerichtet

Charakterisierung des optischen Übertragungskanals

Impulsantwort h(t)

= Systemantwort (@Rx) auf einen Lichtimpuls $\delta(t)$ ("Blitz")

$$h(t) = h_{\mathsf{Rx},\mathsf{Tx}}(t) + h_{\mathsf{diff}}(t)$$

oder

Übertragungsfunktion H(f)

= Fouriertransformierte der Impulsantwort (Frequenzgang)

Erinnerung: Systemtheorie

- h(t) beschreibt die Echo-Amplituden
- H(f) beschreibt den Frequenzgang:
 - Dämpfung bei der Frequenz f
 - Phasenverzögerung bei der Frequenz f

Wegen IM/DD gilt:

In H(f) ist f die Frequenz der Intensitätsmodulation des Lichtes

Ausbreitungswege: LOS und Reflexionen

N Flächenelemente A_k mit Reflexionsfaktoren ρ_k

$$\begin{aligned} h_{\mathsf{Rx},\mathsf{Tx}}(t) &= \eta_{\mathsf{Rx},\mathsf{Tx}}\delta(t - \tau_{\mathsf{Rx},\mathsf{Tx}}) \quad \circ & \bullet \quad H_{\mathsf{Rx},\mathsf{Tx}}(f) = \eta_{\mathsf{Rx},\mathsf{Tx}}e^{-j2\pi f\tau_{\mathsf{Rx},\mathsf{Tx}}}\\ h_{i,k}(t) &= \eta_{i,k}\delta(t - \tau_{i,k}) \quad \circ & \bullet \quad H_{i,k}(f) = \eta_{i,k}e^{-j2\pi f\tau_{i,k}} \end{aligned}$$

usw.

Impulsantwort der diffusen Komponente

Barry et al. 1993; Carruthers und Kannan 2002

Reflexionen 1., 2. und 3. Ordnung als *Summen* (über alle *N* Flächenelemente) *von mehrfachen Faltungen*:

$$h_{\text{diff}}^{(1)}(t) = \sum_{k=1}^{N} \rho_k h_{\text{Rx},k}(t) * h_{k,\text{Tx}}(t)$$
$$h_{\text{diff}}^{(2)}(t) = \sum_{i,k=1}^{N} \rho_i \rho_k h_{\text{Rx},i}(t) * h_{i,k}(t) * h_{k,\text{Tx}}(t)$$

$$h_{\text{diff}}^{(3)}(t) = \sum_{i,k,l=1}^{N} \rho_i \rho_k \rho_l h_{\text{Rx},i}(t) * h_{i,k}(t) * h_{k,l}(t) * h_{l,\text{Tx}}(t)$$

Impulsantwort der diffusen Komponente als unendliche Summe:

I

$$h_{ ext{diff}}(t) = \sum_{\ell=1}^{\infty} h_{ ext{diff}}^{(\ell)}(t)$$
11

Muss das mit den vielen Faltungen wirklich sein?

Convolution: its bark is worse than its bite!

(Cartoon aus dem Buch von B.P. Lathi, Signal Processing and Linear Systems)

Muss das mit den vielen Faltungen wirklich sein?

(Cartoon aus dem Buch von B.P. Lathi, Signal Processing and Linear Systems)

 \rightsquigarrow transformiere in den Frequenzbereich $h(t) \circ H(t)$

Muss das mit den vielen Faltungen wirklich sein?

(Cartoon aus dem Buch von B.P. Lathi, Signal Processing and Linear Systems)

 \rightsquigarrow transformiere in den Frequenzbereich $h(t) \circ H(t)$

→ aus Faltungen werden Produkte!

Übertragungsfunktion der diffusen Komponente H. Schulze, IEEE Trans. on Comm., Juni 2016

Reflexionen 1., 2. und 3. Ordnung als Summen von Produkten:

$$H_{\text{diff}}^{(1)}(f) = \sum_{k=1}^{N} H_{\text{Rx},k}(f)\rho_{k}H_{k,\text{Tx}}(f)$$
$$H_{\text{diff}}^{(2)}(f) = \sum_{i,k=1}^{N} H_{\text{Rx},i}(f)\rho_{i}H_{i,k}(f)\rho_{k}H_{k,\text{Tx}}(f)$$
$$H_{\text{diff}}^{(3)}(f) = \sum_{i,k,l=1}^{N} H_{\text{Rx},i}(f)\rho_{i}H_{i,k}(f)\rho_{k}H_{k,l}(f)\rho_{l}H_{l,\text{Tx}}(f)$$

Übertragungsfunktion der diffusen Komponente als unendliche Summe:

$$H_{\mathrm{diff}}(f) = \sum_{\ell=1}^{\infty} H_{\mathrm{diff}}^{(\ell)}(f)$$

Das sind ja alles Produkte von Matrizen!

Beispiel: Reflexionen 3. Ordnung kann man schreiben als

$$H_{\text{diff}}^{(3)}(f) = \sum_{i,k,l=1}^{N} H_{\text{Rx},i}(f)\rho_i H_{i,k}(f)\rho_k H_{k,l}(f)\rho_l H_{l,\text{Tx}}(f)$$
$$= \mathbf{r}^{\text{T}}(f)\mathbf{G}_{\rho} (\mathbf{H}(f)\mathbf{G}_{\rho})^2 \mathbf{t}(f)$$

mit folgenden Vektoren und Matrizen:

 $\begin{array}{ll} \mathsf{Tx} \to \mathsf{Fl\"achen} & \mathsf{t}(f) = \left(\begin{array}{ccc} H_{1,\mathsf{Tx}}(f) & H_{2,\mathsf{Tx}}(f) & \dots & H_{N,\mathsf{Tx}}(f) \end{array}\right)^\mathsf{T} \\ \mathsf{Reflexionsfaktoren} & \mathsf{G}_{\rho} = \operatorname{diag}\left(\rho_{1},\dots,\rho_{N}\right) \\ \mathsf{Fl\`{achen}} \to \mathsf{Fl\`{achen}} & [\mathsf{H}(f)]_{ik} = H_{ik}(f) \\ \mathsf{Fl\"{achen}} \to \mathsf{Rx} & \mathsf{r}^\mathsf{T}(f) = \left(\begin{array}{ccc} H_{\mathsf{Rx},1}(f) & H_{\mathsf{Rx},2}(f) & \cdots & H_{\mathsf{Rx},N}(f) \end{array}\right) \end{array}$

Reflexionen der Ordnung *l*:

$$H_{\mathrm{diff}}^{(\ell)}(f) = \mathbf{r}^{\mathsf{T}}(f) \mathbf{G}_{\rho} \left(\mathbf{H}(f) \mathbf{G}_{\rho} \right)^{\ell-1} \mathbf{t}(f)$$

Diffuse Komponente als Neumann-Reihe

$$\begin{aligned} \mathcal{H}_{\text{diff}}(f) &= \sum_{\ell=1}^{\infty} \mathcal{H}_{\text{diff}}^{(\ell)}(f) \\ &= \mathbf{r}^{\mathsf{T}}(f) \mathbf{G}_{\rho} \left(\sum_{\ell=1}^{\infty} \left(\mathbf{H}(f) \mathbf{G}_{\rho} \right)^{\ell-1} \right) \mathbf{t}(f) \end{aligned}$$

Summenformel der Neumann-Reihe (=geometrische Reihe für Matrizen) \Rightarrow

$$H_{\text{diff}}(f) = \mathbf{r}^{\mathsf{T}}(f) \mathbf{G}_{\rho} \left(\mathbf{I} - \mathbf{H}(f) \mathbf{G}_{\rho} \right)^{-1} \mathbf{t}(f) \quad (\mathbf{I} = \text{Einheitsmatrix})$$

Also:

- Im Frequenzbereich kann man eine geschlossene Lösung für unendlich viele Reflexionen finden
- Dagegen: Im Zeitbereich kann man nur Reflexionen endlicher Ordnung berechnen

Die Lichtausbreitung im Raum als rekursives System

Alternative Formulierung (ähnlich dem Radiosity Approach in der Computergraphik)

Rekursionsgleichung für das Licht an den Wandflächen:

$$\mathbf{s}(f) = \mathbf{t}(f) + \mathbf{H}(f)\mathbf{G}_{
ho}\mathbf{s}(f) \ \Rightarrow \ \mathbf{s}(f) = (\mathbf{I} - \mathbf{H}(f)\mathbf{G}_{
ho})^{-1}\mathbf{t}(f)$$

$$\Rightarrow H_{\text{diff}}(f) = \mathbf{r}^{\mathsf{T}}(f) \mathbf{G}_{\rho} (\mathbf{I} - \mathbf{H}(f) \mathbf{G}_{\rho})^{-1} \mathbf{t}(f)$$

Anmerkungen zur numerischen Berechnung

$$H_{\text{diff}}(f) = \mathbf{r}^{\mathsf{T}}(f) \mathbf{G}_{\rho} (\mathbf{I} - \mathbf{H}(f) \mathbf{G}_{\rho})^{-1} \mathbf{t}(f)$$

d.h. berechne für jede Frequenz f den Ausdruck

$$\mathbf{s} = (\mathbf{I} - \mathbf{A})^{-1} \mathbf{t}$$
 (mit $\mathbf{A} = \mathbf{H}(f) \mathbf{G}_{
ho}$).

Das lineare Gleichungssystem (für den Vektor s)

$$(I - A)s = t$$

kann man mit dem *Gauß-Algorithmus* lösen, – oder mit *Jacobi-Iteration*:

$$\boldsymbol{s}_\ell = \boldsymbol{t} + \boldsymbol{A} \boldsymbol{s}_{\ell-1}$$
 mit Startbedingung $\boldsymbol{s}_1 = \boldsymbol{t}$

~ das führt gerade wieder zurück auf die Neumann-Reihe

$$\mathbf{s}_L = \sum_{\ell=1}^L \mathbf{A}^{\ell-1} \mathbf{t}$$
 ($\ell = ext{Ordnung der Reflexion}$)

Verallgemeinerung auf mehrere Sender und Empfänger

Numerische Berechnungen und Ergebnisse

Impulsantwort durch IFFT:

$$H(f) = H_{\mathsf{Rx},\mathsf{Tx}}(f) + H_{\mathsf{diff}}(f) \quad \bullet - \circ \quad h(t) = h_{\mathsf{Rx},\mathsf{Tx}}(t) + h_{\mathsf{diff}}(t)$$

Mittlere optische Empfangsleistung (=Gleichanteil des Signals):

$$\Phi_{\mathsf{Rx}} = H(0)\Phi_{\mathsf{Tx}}$$
 d.h. $\eta = H(0)$

Vergleiche mit Ergebnissen der Literatur:

- Barry et al. 1993: Zeitbereichssimulationen (Faltung) mit Reflexionen bis maximal 3. Ordnung
- Carruthers und Kannan 2002: Numerische Verbesserung der Barry-Methode. Reflexionen bis 7. bzw. 10. Ordnung
- Jungnickel (Jn) et al. 2002: Rechnet den Raum wie eine ULBRICHTKUGEL ~→ grobes analytisches Modell

Jungnickel: Ulbrichtkugel-Modell für den Raum

Hohlkugel mit einer kleinen Einfalls-Öffnung und beschichteten Innenflächen: Lambert-Reflektoren mit konstantem ρ

 \Rightarrow konstante Bestrahlungsstärke auf den Innenflächen

Näherungsweise exponentielle Impulsantwort!

Barry-Konfiguration A: Raum $5\,\mathrm{m}\times5\,\mathrm{m}\times3\,\mathrm{m}$

Stark reflektierende Wände: $\rho = 0.8$; Tx: Lambert-Strahler (m = 1)

- Hoher Reflexionsfaktor ρ = 0.8 ⇒ Reflexionen höherer Ordnung tragen wesentlich bei
- Reflexionen bis 3. Ordnung liefern nur geringen Teil der diffusen Empfangsleistung
 - Jungnickel-Modell passt überraschend gut (Zufall?)

Barry-A: $H_{\text{diff}}(t)$ und $h_{\text{diff}}(t)$

- Die Reflexionen höherer Ordnung spielen eine große Rolle
- Bei niedrigen Frequenzen ist Jungnickels Kugelmodell eine gute N\u00e4herung
- Asymptotisch exponentielles Abfallverhalten f
 ür h_{diff}(t) sieht man nicht bei niedriger Ordnung

Barry-D: Raum 7, 5 m \times 5, 5 m \times 3, 5 m

Tx und Rx auf Tischhöhe und nach oben gerichtet (rein diffus); $\rho \approx 0.5$ (variabel)

- Jungnickels Kugelmodell unterschätzt die Leistung deutlich
- Asymptotisch exponentielles Abfallverhalten f
 ür h_{diff}(t) sieht man ab ca. 6. Ordnung

Modell-Seminarraum $12 \,\mathrm{m} \times 10 \,\mathrm{m} \times 3 \,\mathrm{m}$ mit 3 Sendern

 $\rho = 0.5$ für Wände und Decke, $\rho = 0.1$ für den Fußboden Tx: Verallgemeinerter Lambert-Strahler mit m = 7; Rx nach hinten gerichtet

Impulsantworten für Seminarraum

- Bei den vorderen Rx-Positionen kommt ein starkes Signal von den Seitenwänden, hinten immer weniger
- Man erkennt die Echos von der Rückwand bei

$$t = (40 + k \cdot 6.7)$$
 ns, $k = 1, 2, ..., 5$

Bei $t = (120 + k \cdot 6.7)$ ns wiederholt sich das Muster in abgeschwächter Form 27

Übertragungsfunktionen für Seminarraum

- Es können bei bestimmten Positionen starke Einbrüche (Notches) auftreten
- Das Jungnickel-Modell beschreibt grob den mittleren Verlauf

- Neues optisches Ausbreitungsmodell f
 ür R
 äume:
 - Beschreibung im Frequenzbereich
 - Matrixmultiplikation ersetzt Summe über Faltungsprodukte
 - Unendliche Reihe über die Reflexionsordnungen lässt sich aufsummieren
 - Ergebnisse im Zeitbereich (durch IFFT) lassen sich geometrisch interpretieren

- Neues optisches Ausbreitungsmodell f
 ür R
 äume:
 - Beschreibung im Frequenzbereich
 - Matrixmultiplikation ersetzt Summe über Faltungsprodukte
 - Unendliche Reihe über die Reflexionsordnungen lässt sich aufsummieren
 - Ergebnisse im Zeitbereich (durch IFFT) lassen sich geometrisch interpretieren
- Ausblick 1: Berücksichtigung der Einrichtungsgegenstände (vgl. Carruthers)

- Neues optisches Ausbreitungsmodell f
 ür R
 äume:
 - Beschreibung im Frequenzbereich
 - Matrixmultiplikation ersetzt Summe über Faltungsprodukte
 - Unendliche Reihe über die Reflexionsordnungen lässt sich aufsummieren
 - Ergebnisse im Zeitbereich (durch IFFT) lassen sich geometrisch interpretieren
- Ausblick 1: Berücksichtigung der Einrichtungsgegenstände (vgl. Carruthers)
- Ausblick 2: Verallgemeinerung für Visible Light Communication \rightsquigarrow weißes Licht $\rightsquigarrow \rho = \rho(\lambda)$

- Neues optisches Ausbreitungsmodell f
 ür R
 äume:
 - Beschreibung im Frequenzbereich
 - Matrixmultiplikation ersetzt Summe über Faltungsprodukte
 - Unendliche Reihe über die Reflexionsordnungen lässt sich aufsummieren
 - Ergebnisse im Zeitbereich (durch IFFT) lassen sich geometrisch interpretieren
- Ausblick 1: Berücksichtigung der Einrichtungsgegenstände (vgl. Carruthers)
- Ausblick 2: Verallgemeinerung für Visible Light Communication \rightsquigarrow weißes Licht $\rightsquigarrow \rho = \rho(\lambda)$
- Ausblick 3: Könnte man auf ähnliche Weise Konzertsäle beschreiben?